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Abstract--The transfer of a multiphase fluid from a high-pressure vessel to one initially at lower pressure 
is investigated. The fluid is composed of two phases which do not undergo any change. The phases consist 
of an ideal gas, and solid particles (or liquid droplets) having constant density. The mixture is assumed 
to be stagnant and always perfectly mixed as well as at thermal equilibrium in each constant volume vessel. 
The fluid also remains homogeneous and at equilibrium while flowing between vessels. The transport 
properties of the mixture are taken to be zero. One important finding is that the expanding mixture or 
pseudo-fluid behaves similarly to a polytropic Abel-Noble gas. The mixture thermodynamic properties, 
the end state in each vessel at pressure equilibrium, the critical parameters and time-dependent results are 
given for the adiabatic and isothermal limiting cases. The results include both initially sonic and initially 
subsonic transfers. No mathematical restriction is placed on the particle concentration, although some 
limiting results are given for small particle volume fraction. The mass transferred at adiabatic pressure 
equilibrium can be significantly less than that when thermal equilibrium is also reached. Furthermore, the 
adiabatic pressure equilibrium level may not be the same as that obtained at thermal equilibrium, even 
when all initial temperatures are the same. Finally, it is shown that the transfer times can be very slow 
compared to those of a pure gas due to the large reduction possible in the mixture sound speed. 
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1. I N T R O D U C T I O N  

The rapid transfer of both ideal and non-ideal gas, between finite volume reservoirs connected in 
a variety of ways, has been studied extensively by Chenoweth (1974, 1979, 1983). Many physical 
effects can independently alter the behavior in such problems. In order to understand how each 
parameter enters the problem, and which ones are dominant for particular cases, great care must 
be exercised in the analysis. The use of limiting analyses helps bound the results, and prevents 
attributing peculiar behaviors to the wrong physical causes. This is even more important when the 
transfer involves a multiphase fluid, because the additional parameters which enter the problem 
can have first order effects which are not always expected or easy to explain. The effect of the 
mixture equation of state and the corresponding sound speed behavior are examples of this sort 
of phenomenon. 

Only homogeneous equilibrium two-phase mixtures are investigated here. It is shown that such 
a mixture, where the carrier gas is behaving as an Abel-Noble gas (non-ideal effects are described 
by the first term of a co-volume virial expansion in pressure), also behaves as an Abel-Noble fluid. 
The mixture co-volume depends linearly on the constant particle mass fraction to combine the gas 
and particle effects. This Abel-Noble fluid has a modified gas constant and undergoes a polytropic 
expansion from the supply because the adiabatic index (mixture ratio of specific heats) is then 
constant and lies between the isothermal limit of unity and the gas ratio of specific heats. The 
transfer of a pure Abel-Noble gas is well-understood (Chenoweth 1983). Although we present 
detailed results only for an ideal carrier gas, the Abel-Noble fluid mixture does have some features 
in common with similar pure gas results. 
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The mixture sound speed can have a very complicated behavior, compared to the relatively 
simple Abel-Noble gas case, even when the carrier gas is ideal (the gas density is negligible 
compared to the gas co-density constant). It can, in fact, have values much smaller than the gas 
sound speed for many combinations of the parameters. Some aspects of this physical phenomenon 
were originally discussed by Sewell (1910). For transfer problems controlled by an orifice or nozzle 
between the reservoirs (rather than a long pipe) the supply sound speed is the dominant fluid 
property. Thus, the importance of fully understanding its effect is paramount to the transient study 
of two-phase fluid transfer. The final state, of course, is determined from the equation of state 
without ever considering the sound speed. 

A wide variety of expressions for sound speed have been derived for different limiting conditions. 
Marble (1970) discusses several limits and gives different expressions, all valid for small particle 
volume fractions applicable to dusty-gas. Schmitt-von Schubert (1969) gives analogous expressions 
without restrictions on volume fraction. For the case of gas bubbles within a liquid carrier, Wood 
(1941, 1955), Karplus (1958), Wallis (1969), Henry & Grolmes (1971) and van Wijngaarden (1972) 
give expressions for arbitrary gas volume fraction in the isothermal limit, as well as more restricted 
expressions valid in other limits which they discuss. Henry & Grolmes (1971) give generalized 
expressions also valid for phase change and discuss the limitations of the various approximations, 
along with data comparisons, in perhaps the greatest detail of any of the references given here. 
Recent papers by Gumerov et al. (1988), and Ruggles et aL (1988) review and summarize much 
of the past work and examine the role of the excitation frequency in the transition from equilibrium 
to the frozen limit. Apparently, Ackeret (1930) originally derived some of these limiting expressions 
for application to gas-water mixtures, while others first appear in Wood (1941). Heinrich (1942) 
gives the equilibrium sound speed for a homogeneous mixture undergoing an isentropic expansion, 
and discusses some of its characteristics. Tangren et al. (1949) rederive the same expressions and 
apply them to de Laval nozzle flow. Additionally, they obtain critical property ratios in the 
isothermal limit and present tables for the parameter range applicable to homogeneous water-gas 
mixture flow. They give limited experimental evidence to support the nozzle flow analysis using 
the critical properties derived there. A major finding of Henry & Grolmes (1971), which seems to 
be supported by the data of Ruggles et al. (1988), is that a small pressure pulse travels at much 
higher velocity and with stronger dependence on volume fraction, compared to the highly 
frequency-dependent sound speed. This finding must be considered when sound speed experiments 
are tested for validity using existing data. 

Most of the existing experimental data on sound speed is for air-water and vapor-water mixtures 
(Karplus 1958, 1961; Semenov & Kosterin 1964; Silberman 1957), and the existence of minimum 
values much less than those of the gas has been demonstrated in these cases. Known expressions 
adequately predict the large changes in sound speed over a wide range of volume fractions. 
Additionally, Nguyen et al. (1981) compare several ad hoe sound speed equations to the above data 
and obtain reasonable agreement in most cases, particularly near the minimum. Some experimental 
data that we are aware of which deals with solid-particle/gas mixtures are those of Zink & Delsasso 
(1958), Soo (1960) and Guenoche et al. (1988). Zink & Delsasso (1958) only investigate dilute 
volume concentrations of AIzO3 (alumina) in a variety of carrier gases, thus their results have 
limited usefulness in verifying the sound speed variation over a wide range of volume fractions. 
Similarly, Soo (1960) gives data for small volume fractions of magnesia carried by air. Guenoche 
et al. (1988) use steel and glass spheres in nitrogen with volume fractions ranging from 0.595 to 
0.66, resulting in a fixed bed configuration. Since this high volume fraction study obtains the sound 
speed by measuring the velocity of the head of an unsteady rarefaction wave, it is not clear that 
the sound speed is actually reported there, since the data of Henry & Grolmes (1971) and Ruggles 
et al. (1988) show that a large difference exists between the speeds of a pressure pulse and that of 
sound, at least for vapor-water mixtures. 

In this work, the equilibrium isentropic sound speed expression is applied to the transfer of a 
homogeneous gas-particle mixture between two finite vessels joined by a nozzle or an orifice to 
control the flow. Thus, there are zero spacial dimensions and negligible volume between the 
stagnant reservoirs. In addition, the transfer is quasi-steady in the sense that the steady, integrated 
Euler equation is applied across the flow control region at each instant of time, as in pure gas 
analyses. The effects of non-isothermal flow on the critical properties, the supply and receiving 
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vessel end states, as well as the transfer time to pressure equilibrium are investigated for a wide 
range of parameters. Analytical limiting solutions are given for some special parameter values, but 
generally the governing equations must be solved numerically. No attempt is made here to include 
the many other flow regimes which are possible [see Henry & Grolmes (1971) or Wallis (1969)] or 
to define the physical limitations of the model used; these difficult tasks are clearly beyond the scope 
of the current paper. 

2. MIXTURE T H E R M O D Y N A M I C  PROPERTIES 

The mixture thermodynamic properties, analogous to those given by Heinrich (1942) and 
Tangren et al. (1949), are given in this section to establish nomenclature and form the foundation 
for the following sections. Furthermore, many of the properties are extended in several areas to 
better clarify the nature of the mixture behavior. 

2.1. Equation of  State 

The mixture density p can be written as 

+ = (1 -- O)pc + Opal [1] 
P =  PC 

in terms of the particle mass fraction ~b or the particle volume fraction 0. Note that 0 = ckp/pd. 
The particle density Pd is taken to be constant, and the gas density Pc is initially taken to be 
non-ideal 

Pc = Zc Pc Rc To, [2] 

where the pressure P, the temperature T, the compressibility factor Z and the gas constant R are 
identified in the gas phase by the subscript G. Since 

1 - q~ [3 ]  
PG=P 1 - 0 '  

then for P = Pc (no particle contribution to pressure) and T = Td = Tc (no thermal lag), the 
mixture equation of state can be written as 

P = Zp R T. [4] 

The above equation of state is written in terms of a mixture gas constant 

and "compressibility" factor 

where 

R = (1 - ¢ ) R c ,  [5] 

( I61 Z =  ! -  = 1 - - 0 '  

d = + , [7] 

provided the gas compressibility factor is given by the Abel-Noble expression (van der Waals gas 
with negligible intermolecular force term) 

which is valid when T ~ Tc (T¢ is the critical gas temperature). The co-densities dG and d for the 
gas and the mixture, respectively, are the inverse of the usual co-volumes and the particle co-density 
dd is identified to be Pd. Obviously, the mixture described by [6] and [7] also behaves as an 
Abel-Noble fluid if 0 is not negligible compared to unity. In the following work it is assumed that 
PG ~dG, so that an ideal carrier gas results (Zc = 1). It should be noted that dc should be 
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determined from PVT data (Chenoweth 1983), since it cannot be reliably obtained from critical 
property information• The effects of Z~ # 1 will be examined in part II (Chenoweth & Paolucci 
1990b) where an Abel-Noble carrier gas is used. 

2.2• Specific Heat Ratio 

The mixture specific heat ratio 7 = Cp/Cv can be written in terms of the particle mass fraction, 
the gas specific heat ratio ~G = Cp~/CvG and 6 = C/Cp o, where C is the particle heat capacity: 

7 = yc [1 - -~-0- - -  6--~c)J; [9] 

using the mixture specific heats at constant pressure and volume, 

C~ = 4)C + (1 - 4))Ca~ [10] 

and 

Cv = ~ c  + (1 - ~)Cvo,  [11] 

where C and the gas heat capacities are taken to be independent of T (calorically perfect gas). The 
behavior of the mixture specific heat ratio is shown in figure 1; note that 1 ~< 7 ~< Vc. When 5 <t 1 
or ~b6 4 1, y -~7c results, while the isothermal limit 7 ~ 1 is obtained when ~c~  1, 4~ --* 1 or ~b6 >> 1. 
It must be emphasized that 4~, and therefore ~, are constants in the expansion region upstream of 
the minimum flow area, directly as a result of the previous assumptions. Obviously, if the initial 
receiver mass fraction is different from that in the supply, then the receiver mass fraction will not 
be constant during the transfer. 

2.3. Isentropic Relations 

In a reversible adiabatic expansion with constant particle mass fraction (no relative velocity 
between gas and particles) Heinrich (1942) and Tangren et al. (1949) obtain the following relations: 

Tp6 (:'- ') = Cl, [12] 

Pp6:' = C2 [13] 

and 

pT-:,h - I) = C3, [14] 

where C~, C2 and C3 are constants. Only the presence of y instead of Yc alters these relations from 
the well-known ideal gas expressions. Since y is constant when ~b is constant, then ~ corresponds 
to a true polytropic exponent which is bounded by unity and YG. 
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Figure I. Mixture ratio of specific heats vs particle mass fraction for ~'G = 5/3 with 6 as the parameter: 
- - ,  6 =  1 0 - 2 ;  . . . . . .  , ~ = 1 0 - ~ ;  . . . . .  , 3 = 1 ;  . . . .  , 6 = 1 0 .  
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2.4. Adiabatic Sound Speed 

When [1] is differentiated with respect to P (with ~b constant) we obtain 

dp V(1-0 )2dpG . 0: dPd-] 

Often dP/dpG and dP/dpd are identified or interpreted as pseudo-isothermal gas and particle sound 
speeds squared, respectively, and dP/dp  is the corresponding mixture value. This interpretation is 
only valid for very slow processes which involve low frequencies. More generally, for rapid 
expansions the derivatives in [15] should be evaluated at constant entropy. Using [13], we get 

dpG PG ?G 
dP  7P ?a~ '  [16] 

in terms of  the adiabatic gas sound speed aG. It is obvious that the "isothermal" and "adiabatic" 
limits of  Wallis (1969) are recovered from [16] when 7 ~ 1 and ? ~)'G, respectively. In this work, 
the last term in [15] vanishes since Pd is constant. In the more realistic case where Pd is not constant, 
the necessary approximation to neglect the last term is 

dp---~ >> a2" [171 

The mixture sound speed a = ~ can then be written as 

aG [ 7__ (1 ]½ a = (1 - O) Leo - ~b) , [181 

where 

aG = (ycRG TG)½. [19] 

This adiabatic equilibrium sound speed represents the low frequency limit (Gumerov et al. 1988). 
The high frequency (frozen) limit results in a---,aG and is not included in the analysis below. Note 
that the mixture adiabatic sound speed only changes in an expansion due to the dependence on 
0 and aG (via T), since ~b and 7 remain fixed. However, since the initial supply sound speed controls 
the transfer time scale (Chenoweth 1974, 1983), it is important to understand how [18] is affected 
by all parameters. For  the purpose of  examining the behavior of [18], the density ratio 

r = - -  = [20] 
Pd 

is introduced; then [18] becomes 

a )2 r[r -- O(r -- 6)] [21] 
~GG = (1 -- O)[r -- O(r -- 1)]Jr -- O(r -- 67G)1 ' 

The pure gas and solid limits are recovered since if 0 ~ 0 ,  a ~ a c ,  while for 0 ~ 1, a ~ ~ .  It can be 
shown that ac < a < ~ only when r > [1 + 6 (7G-  1)]/2. However, for constant r in the range 
0 ~< r < [1 + ~(YG - 1)]/2, a minimum sound speed exists such that ami, < ac in the physical region 
0 ~< 0 ~ 1. This behavior is illustrated in figure 2 where a/ac is plotted vs 0 with r as a parameter 
for 7~ = 5/3, 6 = 0.01 and 6 = 1. It appears that there is often a wide range of  0 values near 1/2 
having sound speed close to the minimum, so this value is quite useful to know. For some purposes, 
when the volume fraction remains in this range, the sound speed can be taken to be independent 
of 0 and assumed to be at its minimum level. 

The explicit value of  volume fraction at which the minimum sound speed occurs is given by 

c303 + c202 + c~ 0 + Co = 0, [22] 

where the coefficients Co, c,, c2 and c3 are functions of  r, 6 and ?c. These coefficients are given 
explicitly by Cbenoweth & Paolucci (1990a) where useful limiting solutions are also given for five 
special cases identified by 6 = 1, r ~ 6, r = i, r = 6 and r = 6~c, as well the criterion for selecting 
the physically correct general solution from the three real roots of [22]. This solution is substituted 
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F i g u r e  3. (a )  M i n i m u m  s o u n d  s p e e d  a n d  (b)  c o r r e s p o n d -  
i n g  p a r t i c l e  v o l u m e  f r a c t i o n  vs  r f o r  YG = 5/3  w i t h  6 as  
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into [21] to find the minimum of (a/aG) 2 at that volume fraction. Figures 3(a, b) give results for 
that minimum and its location vs r for various values of 6 and VG = 5/3. Although when r ,~ 6, 
(a/aG)~i,~4r/TG and its location 0--.1/2, significantly different behavior is obtained for larger 
values of r. 

As an illustration of this behavior, the experimental data of Karplus (1958) for the air-water 
system (actually for air bubbles carried by water with the aid of a detergent additive) with 
0.33 ~< 0 ~< 0.99 shows that for low frequencies (~< 103 Hz), am~,--20m/s near 0 -~ 0.5, at atmos- 
pheric conditions compared to a = 1500 m/s when 0 = 1. Thus, we calculate for 1 atm and 300 K, 
aG = 347.2 m/s, 7G = 7/5, 6 = 4.158 and r = 1.188 x 10 -3. For these parameter values r ,~ 6 and 
am~, = 2 a G ~  = 20.23 m/s at 0 = 0.5000. Furthermore, ~b = 0.9988 and V = 1.00008, implying 
that the isothermal limit holds for these conditions. This conclusion was also reached by Karplus 
(1958) as well as Wallis (1969) in his analysis of Karplus' data, which shows excellent agreement 
with the simplified form of [21] for small r over the entire range 0.33 ~< 0 ~< 0.99, except of course 
from [21] a--*~ as 0--,1. 

As an aside, it should be noted that the air-water and very similar vapor-water data of Henry 
& Grolmes (1971) and Ruggles et aL (1988) for "pressure pulse propagation velocity" show 
minimum speeds about twice as large as the values just given for sound speed under similar 
conditions, illustrating the large difference between these two speeds. The pulse propagation 
velocity depends strongly on volume fraction, whereas sound speed shows strong dependence on 
the sound wave frequency if it is high enough for non-equilibrium effects to occur. Both two-fluid 
and relaxation analyses show this strong, but somewhat different, dependence on frequency when 
departures from equilibrium exist. Temkin & Dobbins (1966a, b) give theoretical (relaxation) 
derivations and experimental verifications, using oleic acid/nitrogen, which in their simplest forms, 
for r ,~ 1, 0 ,~ 1, and neglecting the often weaker dependence on thermal relaxation, show the sound 
frequency must be less than VGpG/pdD ~ in order that the equilibrium expression [18] be valid, and 
for essentially no frequency dependence to exist. Here v G and Dd are the carrier fluid kinematic 
viscosity and particle (or bubble or droplet) diameter, respectively. Of course for bubble flows Pc vG 
is the liquid carrier dynamic viscosity and Pd becomes the bubble density. Clearly, for the same 
Dd, [18] is valid for much larger sound frequencies with bubble flow than with particles or droplets 
carried by a gas. Conversely, for the same sound frequency, much larger bubble diameters are 
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allowed compared to droplet or particle diameters. Nevertheless, it is clear that very fine dispersions 
of particulate matter of any type greatly increases this frequency limit. Temkin & Dobbins (1966b), 
Cole & Dobbins (1970), Davidson (1975) and Gumerov et al. (1988) all show that the sound 
frequency must be much smaller than both the dynamic as well as the thermal relaxation time 
inverses in order for the dilute equilibrium sound speed expression to apply. This means that if 
the product of 3/2 times the carrier fluid Prandtl number and the ratio of the dispersed phase heat 
capacity to that of the carrier fluid is greater than unity, then the thermal relaxation dependence 
becomes dominant. In that case, the dynamic relaxation frequency limitation given above must be 
scaled by the inverse of this product so that the resulting more restrictive thermal relaxation 
frequency limitation is obtained. Steen (1986) actually uses a sound speed' expression identical to 
that of Temkin & Dobbins (1966b) with combined thermal and dynamic relaxation time frequency 
dependence to devise an acoustic method of measuring particle mass fractions of small volume 
fraction mixtures in gases. It should be noted that the refined relaxation theory of Davidson (1975) 
and also the two-fluid theory of Ardron & Duffey (1978) seem to indicate that the frequency 
limitations just discussed may have to be reduced further, by a factor of 5, in order for the 
equilibrium frequency independent limit to be closely approached. It is not clear what the 
limitations are on sound frequency and particle size for non-dilute mixtures. It is obvious, however, 
that 0~1 /2  results in strong interactions between phases and since neither phase is likely to be 
dispersed to a great extent in the other, one would expect this region to present the most severe 
test of any sound speed model. 

3. END-STATE RESULTS 

Considerable information can be obtained without solving the time-dependent problem by 
examining the asymptotic end-states at pressure equilibrium under adiabatic and isothermal 
conditions in terms of the initial data. The importance of such results is relevant to rapid mass 
transfer since then a quasi-static pressure equilibrium occurs while significant expansive cooling and 
compressive heating effects still exist in the supply and receiver, respectively. Complete thermal 
equilibrium of the system is usually approached at a much slower rate than that for pressure, and 
it is often not allowed to occur due to transfer time constraints. In some cases, a significant amount 
of mass is transferred following the initial pressure equilibrium, by the ensuing heat transfer, during 
the approach to the final state. Furthermore, even though the vessel pressures remain approxi- 
mately equal during this final approach, they may change together significantly while thermal 
equilibrium is being reached (see the appendix). The maximum possible effects which can occur, 
can be estimated without considering any details of the convective heat transfer processes. This can 
be done by comparing the conditions existing at adiabatic pressure equilibrium with those existing 
at the final end-state. Such a comparison is formulated below using the following normalization 
by initial supply quantities: 

=.f~0) ' [231 

where f is any dependent variable, and the subscript j is 1 or 2 denoting supply and receiver, 
respectively. 

3.1. Thermal Equilibrium 

The final state, where t-*oo and both pressure and thermal equilibrium exist, is very easy to 
obtain since the final gas density is known in terms of the constant total gas mass and volume in 
the system. Thus, from [2] we have: 

1+  V' ,]' 

where the final system temperature ~ ( ~ )  is known and it is not necessarily equal to T2(0); 

v'  vo2(o) - [1 - 0:(o) 7 
=v2 0-y6ij' 

[24] 

[25] 
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using the normalized receiver volume I7" 2 = V:/V~; and 

pG~(o) P2(0) 
P' Pc,(0) 7".,(0 ) [26] 

Similarly, using [2] and [20], the final supply volume fraction is 

{ T-- (°°)'~ -1 [27] ff,(~) = 0 , ( 0 )  + I1 - 0~ (0 ) ]  P ( o e ) j  ' 

Notice that 0:(oc) is obtained from ffl (oc) using [30] below, if 172 # 0. 

3.2. Adiabatic System 
In this section results are expressed in terms of the normalized supply particle volume fraction 

0j. The supply expansion is assumed to be isentropic, so that the pressure and temperature can 
be written as 

/5, = 6~', L F ll - 0, (0) ];', -- Y7o-(-(oiJ [28] 

and 

7"1 = /51- 1'71 [291 

Since the supply and receiver volumes as welt as the total mass are constant, the receiver particle 
volume fraction and mass fraction can be written as 

~ = ~(0)-+ 1--0, 
i72 [301 

and 

1 - O, + 17202(0)] [31] &2= 

Here the definition f2(0)=  02(0)/&2(0) requires special attention, as discussed below. When the 
system is adiabatic, its total internal energy remains constant, and it is independent of the external 
temperature. The receiver temperature is then obtained from the condition E = E'~ + E2 and the 
mixture specific heat [I I] so that 

- 0, + 172 ¢52 (0))\1 +-~-~-~2F,) [321 

where the system energy E is given by 

E = 1+  17~_ 7"2 (0)fi2 (0)[ I +  4)' 4~:(0)F~l 
1 7 ~ - ] ~  J '  [33] 

and F, = 6~?a -  1. Finally, the receiver pressure is obtained from [2] and [20] as 

1 - 0,(0) ~F~2 I__- f ] l  [34] 
P-,= t2L~_vs~,@)jk ~-4), j 

Equations [28]-[34] involve 0, in addition to nine parameters describing the initial state of the 
system. Some of these parameters can be related using [2] and [20] so that in effect only eight 
dimensionless parameters are independent. These can be related by 

f2(o) = ~ i - g , ~  JD -2- 4)~-,(oi ' 

except when /5_,(0)= 0 and there are particles present in the receiver [since 4)2(0) is unity in this 
limit], in which case 

fi,(O) = 4), 6:(0). [36] 
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The system of equations [28]-[36] describe the state of the adiabatic system at all times in terms 
of 0~. At pressure equilibrium, where P~ = P:,  we can write 

1 --0_~(0) 1;" [l - 0,(0)][1 - #, + ~I22][1 + flI72 T2(0)] 

0~' - 0,(0)] - [I - #, + ~172] + [17"2(1 - 02(0)) - 0,(0)][1 - 8, + ill;2] + [(fl - a)1220,(0)/~,]' [37] 

where 

and 

,[I - 02(0)I [38] 
= P i - o, ( o ) ]  

# = #5(0) [1 + i ~ S ~  ] '  [39] 

which appear to have more mathematical then physical significance. They are clearly pseudo- 
density ratios; e.g. ~ is the gas density ratio which would occur if gas occupied the entire reservoirs 
rather than just the void volumes. 

Now [37] can be solved for O~ =/~l(teq) to obtain the adiabatic end-state analogous to the 
isothermal expression given by [27]. There is an advantage obtained by using 7~ as a parameter 
rather than 6~. When [9] is used to replace 6t by 7t, and [35] is used to eliminate 62(0) from [39], 

fl = ct \ ~ c  - -  l J + t~2 (0)  [40] 

so that all explicit mass fraction dependence has been removed from the solution to [37]. That is, 
any combination of ~b~ and 6~ which yields ~j for a given )'G is allowed without altering 0~ (teq), when 
0~ (0), 02(0), P2(0), T2(0) and I7"2 are specified (fixed parameters). If  instead, 02(0) is eliminated via 
[35], 

- l ) \ !  - 4,, 6 2 ( 0 ) / ]  

and then explicit qS, dependence is removed only if t#2(0) - 1 or q~2(0) ~ i, although it appears to 
be weak unless 62(0) > I. These cases prove to be very useful in limiting examples. Generally, a 
numerical solution of [37] is required; however, there are some useful special cases where exact 
results can be obtained. These limiting expressions are given in the appendix. Additional detailed 
results from them and further discussion can be found in Chenoweth & Paolucci (19903). 

4. C R I T I C A L  PARAMETERS 

In order to be able to determine if the flow is sonic and the sonic flow rate, the determination 
of critical parameters is necessary. It is assumed that the flow control point is located at the 
minimum area between the supply and receiver vessels. The transfer between vessels is treated in 
a quasi-steady fashion, in the sense that the steady, integrated Euler equation is applied across the 
flow control region at each instant of time as in pure gas analyses. The gas in the reservoirs is taken 
to remain stagnant at all times compared to the minimum area flow velocity. 

Since viscous effects are neglected here, the one-dimensional steady Euler equation 

dP 
u du - [42] 

P 

can be written in integrated form as 

The above equation gives the velocity u at any point where the pressure is P in terms of the supply 
reservoir conditions, indicated by the subscript 1. Equation [43] was given by Tar~gren et al. (1949). 
They show that it contains the pure gas isentropic expansion as well as the incompressible Bernoulli 
equation in the limiting cases of 0~-*0 and 0 ~  I, respectively. 
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The sound speed can also be written in terms of the pressure ratio P/P~ as 

a 2 = [  7, P, ] ( P ) ' - ' " [  (---P'~";'T 
( 1 - - 0 , ) p ,  # l-O,+O,\p,,/ J , [44] 

so that when u~ < u 2, u 2= a: and P = P..  the critical pressure ratio 

P. 
K = - -  [451 

PI 
is related to 7~ and 0~ by 

O,(y~-I)[1-(I+yt)K-~(I-~o~)K'+L';'I]+(1-O,)y,[I-(127-----2)K'-L';'II=O. [46] 

The above equation shows that K is not constant, but may change rapidly with 01 (except when 
0t < 1) during the transfer. Equation [46] is valid for arbitrary 7~ and is more general than the 
expression 

(1 KOI \2"" F O' K], [47] 
+ 1---~1) ~ 2El-~-~1 ( 1 - K ) - l n  

given by Tangren et al. (1949), which is only valid for 71~1. They tabulated the results for 
1/3 ~< 01 ~< 0.952 since their interest was in a mixture of  small gas bubbles in water. The more general 
results given by [46] are shown in figure 4 for 1 ~< 71 ~< 5/3 and 0 ~< 01 ~< 1. In figure 4, K/Ko is plotted 
vs 01 with ?~ as the parameter, where 

( _ ~ 2  "]~',."~', - n 
Ko = \71 + 1,/ [48] 

corresponds to the negligible volume fraction limit for K when 01 < 1, which reduces to the pure 
gas value only if q~j < 1 is also present. Note that with this normalization 0 ~< K/Ko ~< 1. We observe 
that although there is significant dependence on 7,, it is not a large effect. 

In order to obtain explicit analytical results, K/Ko can be expanded in 01 and (7~-  1) as 

K = K0[1 + A~0, + , 4 2 0 ~ + . . . ] ,  [49] 

where 

.4, = [1 - -  (1 + 7 , ) K o ]  [501 

and 

.42 = 4[K~/;'' + bo + b~(7, - 1) + b2(71 - 1) 2 + . . .  ]. [51] 

O "  

~4 

0 

6" 

d" 

K/Ko 

d" 

o,o &2 ~., o.s 

i r 

0.0 0.2 0. ,  d.6 
01 

1.0 

F i g u r e  4. Cr i t i ca l  p r e s s u r e  r a t i o  vs  s u p p l y  v o l u m e  f rac -  
t ion  w i t h  7~ a s  t he  p a r a m e t e r ;  t he  inse t  is a c o m p a r i s o n  
w i t h  [49]: ' , Y t = I ;  ...... , ) ' 1 = 1 . 2 ;  . . . .  , 7 ; = 7 / 5 ;  

. . . .  , 7t = 5/3. 

7"c 

" b  

/ /  
/ / 

/ ' /  /: i ] . . . /  / /  
:: . ~  .°.-- . ...... 

~ ' ~  o.O-o°°" .y.." 
~0= ~ ""°°'°°°°~ " ........... ""'" 

o.o d.2 d.4 d., d.8 1.o 
qSl 

F i g u r e  5. Son ic  t i m e  scale  f a c t o r  vs  s u p p l y  m a s s  
f r a c t i o n  for  76 = 5/3 w i t h  6~ as  t he  p a r a m e t e r :  - -  
61 = 10-2; ..... , 61 = 10- t ;  -- - ,  6 t = 1: 

fit = 10. 
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An accurate approximation is obtained for 0t ~< 0.6 if the expansions are truncated above the 
quadratic terms, and the coefficients are adjusted such that b0=-0 .6505 ,  bt = - 0 . 0 9 4 1  and 
b2 = 0.0213. The inset in figure 4 gives the approximate results [49]-[51] as dotted curves for the 
same ?~ values used on the larger figure and given now as solid curves to show that the 
approximation is sufficiently accurate to be used for analytical purposes if 0t ~< 0.6. 

The other relevant critical parameters can be expressed in terms of K, ?~ and 0~ as follows: 

~b,/~b~=l, T . / T t = K  t-t/':,, r . / r t = K  t/~,, O./Ot=[Ot +( l -Ot )K- t " ; ' q  -I, 

a./at = [(1 - 0t ) + 0t Kt/'~qK ('~' -w2r,, p.a./Pt at = K (r' ÷ t),,2~, [52] 

5. T R A N S I E N T  RESULTS 

Bounding end-state results for several transfer conditions are presented in the appendix. In the 
preceding section we presented the critical flow properties necessary to determine the sonic transfer 
rate as well as specifying when the transfer is in fact sonic. In this section transient results are 
obtained, and the time scale t~q which relates to the previous results in the adiabatic limit is found. 
In addition to assuming the reservoirs stagnant during the transfer compared with the minimum 
flow area velocity, the transfer region is assumed to consist of  negligible volume relative to the 
smaller of  V~ and V2 for the vessels. 

Since 01 = / ~ ,  the time rate of change of the supply volume fraction is 

where the velocity at the minimum flow area A e 

ue [54] tie = acj (0)' 

and the non-dimensional time, 

= 

"IS L V2 A + P2)t, [55] 

are scaled by the initial supply gas sound speed. A more natural scaling which occurs involves the 
initial supply mixture sound speed, but the gas value is used here to better show the large effect 
which the presence of particles have on the actual transfer times. The reason for including I7" 2 in 
the time scaling becomes obvious when the limits P2 '~ 1 and /7" 2 ~> 1 are considered. The 
non-dimensional mass flux can be evaluated using [4], [5], [28], [29], [43] and [52], assuming ~ ,~ ~ :  

[o, +(, ,o '(-',_o, 
[(1--Y)(I--0-~10t) + (\7, ?'- lj '~(l-Y'-v~"')l~' [56] 

depending on the pressure ratio y so that 

P2 
K when ~ < K ,  

Y = P2 P2 [571 
E when ffl > K, 

corresponding to the sonic or subsonic exit velocity at the minimum flow area. In general, [53] with 
[56] must be integrated, from fit (0)= I until fit approaches the end-state ff~ (teq). At the same time 
[46] is solved for K(?I, 01 ), and P2/P~ is obtained via [28]-[36] so that y can be computed from [57]. 
Alternately, the approximate expression for K given by [49] can be used in [53] and [56] so that 
[53] can then be integrated directly for K while P2/Pt <~ K. In this sonic flow limit, the dimensional 
time history of ffl depends on four independent dimensionless parameters, ?o, 61, ~bj and 0~ (0), 
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which characterize the initial supply conditions. Note that although 175 appears via the scaling of 
r, it is not present in the sonic dimensional time history. However, when P2/Pl > K, Y:2 enters, and 
three other independent parameters describing the initial receiver conditions must be selected from 
7~2(0), P2(0), if2(0) and q~2(0). Note that the fourth parameter is related to the other three via [35]. 
Since transient solutions must asymptotically approach the end-state results as r ~rcq, the need for 
eight independent dimensionless parameters is consistent with the requirement previously found 
necessary to compute the end-state. From figure 4 it is clear that increasing the supply volume 
fraction enlarges the subsonic region in pressure ratio space for a given 7~, whereas the opposite 
is true for increasing the supply mass fraction for a fixed 01. 

5.1. Negligible Particle Volume Fraction 
When 0~ (0) ,~ 1, then 

d[g~1-.,.,)n] - ~b,) [I - y<" -1):"] !, l " 2 lyt/~, [58] 
dr = (I J \I + 17"2J " 

5.1.1. Sonic solution 
The above equation has the sonic or choked flow solution 

g . =  1 +  ~ ~_1 ' [591 

when y = K--+Ko, where the time scale factor 

r g l =  (1 - dM)½ keG.] (~'l~½ \(71 2- l I\y,~( 2~';"+w2°"+ 1J i, [601 

reduces to the well-known pure gas result if ~b, ,~ 1 and qb161 ,~ l so that Y,oYG. Since r is the 
dimensionless gas time scale, then the effects of particles enter the solution via re and the exponent 
2/(1 -71) ;  the polytropic exponent (adiabatic index) is specified by the mixture ratio of specific 
heats ?j in the supply which together with the supply mass fraction ~1, determine the supply mixture 
sound speed relative to that of  the gas. Figure 5 gives rc vs q~, with 61 as parameter for 7G = 5/3, 
a form comparable to figure 1 for y,. It is obvious that transfer times much longer than those for 
a pure gas are easily obtained, since even when 0, (0),~ l it is still possible for ~b I and ~, to take 
on their normal range of  values. In addition, if q~2 = ~bl and 02(0 ) ,~ l, 

l + 6 :2 (_0)11., 
O,= l+oe2,,_= [ . [61] 

-P~ _1 

When the minimum area flow first becomes subsonic (denoted by an asterisk) we have 

-+- V~P2(0)] ' [62] g, f r . ) =  I - - ' :"  
l + V 2 K 0  I ' 

where 

r. { [ l  1 ( ~ 0 ) 1 1 '  ",':2~', _ 1 ~(1 + IY2' / [63] = _ 

specifies the time at which this occurs. 

5.1.2. Subsonic solutions 
As noted, the subsonic solution requires additional information about the receiver conditions. 

Analytical results can be obtained in this case if 02(0) ,~ 1 and q~_, = ~t. Then using [61] for if, and 
Y = P2/P,, solutions can be obtained in the charging limit as well as the discharging limit. 

(i) V, ~ ! (charging limit). In this limit 7", ~ 1, P, ~ 1 and 6t ~ 1, a new variable w can be 
introduced such that 

y = P, = (1 - wZ) :''/I;'' 1) [64] 
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The new variable w is bounded by 

_(,,-,? 
0 ~< w ~< w. - \ - ~ - - ~ :  [651 

and is the minimum flow area Crocco number. It physically represents the fraction of the total 
enthalpy converted to kinetic energy at that point. The non-dimensional time for the problem 
becomes 

= V AeaG-2 (O)lt  [661 
* L v~ j 

and then [58] can be integrated to give 

z = z0 + (Wo - w)%, [67] 

where the subscript 0 identifies the starting subsonic conditions defined by 

; .  when P2(0) ~< Ko, [68] 
~o = when P2 (0) > K0, 

where Ko is given by [48], 

and 

3. P2(0)] 
Tc 

w, when 
wo = [1 -/~2(0) (~' -l)/y~]½ when 

The time scale factor % is related to zc by 

---',c (:'-' 
At pressure equilibrium/~2-- 1 and w --0, so at that time 

"~eq ~" "~0 "[- Wo Tw 

and the time-dependent solution is then given by 

/~2 = E 1 -  ("Ceq - -  "t'~2171/('tl - I) 
j ' 

and 

o2 = 62 (o) + 1 [P2 - P2 (o)] 
Yl 

[69] 

P:(0) ~< Ko, 
/52 (0) > Ko. [70] 

[71] 

[721 

[73] 

[74] 

E751 

Note that when the receiving vessel is initially evacuated ~2--*~1. Of course, for solutions where 
P2(0) < K0, the subsonic solution [73] must be mated with the sonic solution 

( 27, ~ [76] P2 = P , ( 0 )  + \~ ,  _ 1} ~ 
at/~2 = K0. Results for the time of adiabatic pressure equilibrium and the receiver volume fraction 
are given in figures 6(a) and 6(c), respectively, for various ~ and/5,(0) parameter values. Only the 
subsonic portion of the/~2 or/~, solutions is non-linear in time. This form of the results is useful, 
since when 6~, ~b I and 7c are given, ~ is found from figure 1 or [9] and T c is obtained from figure 
5 or [60]; then for a given/~2(0), actual times can be associated with the results when A,, aG~ (0) 
and 1"2 are provided using [66], and 02 is found once 0)(0) and 05(0) are selected. Notice that the 
greatest sensitivity to yj occurs for/~2(0) ,~ I. 
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Figure 6. Time of adiabatic pressure equilibrium vs initial pressure ratio for 01(0) '~ 1 and 02(0) ,~ I with 
",h as the parameter for (a) 172 ,~ I and (b) ~ ~> l, and the corresponding volume fraction vs time with 
;h and /%(0) as parameters for (c) 172 '~ I and (d) 172 ~> h - - ,  Yl = 1; ..... , ,,,j --- 1.2; - -  , 71 = 7/5; 

. . . .  , 7t = 5/3.  

(ii) V2 >> 1 (discharging limit). In th is  d i s c h a r g i n g  l imi t  T2 = T'2(0), #2 = /~2(0)  a n d / ~ t  = ffl 7~, = ff~', 
so t h a t  by  de f in ing  a new v a r i a b l e  z p r o p o r t i o n a l  to  the  m i n i m u m  a rea  M a c h  n u m b e r  we can  wr i te  
the  p re s su re  r a t i o  as 

3' = P2(0) f f ,  -~'~ = (1 + z2) ;'''(' -;,I,  [77] 

so t ha t  [58] can  then  be i n t e g r a t e d  to  give 

T = ~o + (Lo - Io)~: ,  [78] 

whe re  

g 
/ ,  = j ( l  + z2) ";2 dz, 

; .  when  P2(O) <~ Ko, 
T0 = when  P 2  (0) > K0, 

[P., (0) '1 - : '  )';" - 11½ 

w h e n  P :  (0) ~< Ko, 

w h e n  P2 (0) > Ko, 

[79] 

[80] 

[ 8 1 ]  

a n d  

n 2 - 7 1  

2 71 - 1 ' 
[82] 
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The subscript 0 identifies the beginning subsonic conditions. The time required for the flow to 
unchoke is 

zc \Y~ + lJ  P2(O)(I-w/2"~'- 1. [83] 

The time scale factor z. is related to Zw by 

z: /52(0)(1-~,)/27, [84] - - =  

"~w 

At pressure equilibrium P~--+P2(O), z--,O and I,--.0, so that the time to pressure equilibrium is 

~oq = 3o + I , : , ,  [85] 

and the time dependent solution is given by 

%" = %'eq - -  In "Cz, [86] 

which allows z to be calculated explicitly for any pressure ratio. Exact analytical results are 
obtained by using the recursion formula 

1 
I. = 1 + n  {z(1 q-Z2)n/2 wnln_2}, [87] 

with n = 0, 1, 2 . . . . .  where I0 = z, and I~ = {z(l + z2)½+ ln[z + (1 + z2)½]}/2 terminate the recursion 
for any positive even or odd integer value of n, respectively. The mixture ratio of specific heats 
is given by 

n + 4  
7J n + 2 '  [88] 

so that the results are valid at an infinite number of discrete values of 7~ = 2, 5/3, 6/4, 7/5, 8/6 . . . . .  
which asymptotically approaches unity for large n. 

Similar results were obtained for the pure gas case by Chenoweth (1974, section E), who gave 
explicit expressions only for 7G = 5/3 and 7/5. As opposed to the pure gas case, here the other values 
of 71 between 7G and unity are more physically significant because 71 can actually reach all those 
values by a proper choice of ~b~. 

These discharging results are given in figures 6(b) and 6(d) in a form similar to the charging case, 
where the time of adiabatic pressure equilibrium and the supply volume fraction are plotted vs P2 (0) 
and ~/Zoq, respectively, for various values of 7J and P2(O). Here Z~q--.oo as P2(0)--*0. For charging, 
the greatest sensitivity of if2 to 7~ occurred for P2(O) < 1, while here that limit for 01 shows the least 
sensitivity to 7~ on the r/z~q scale. However, due to the fact Z,q has its greatest variation with 71 
in that limit, there are still very large Yl effects present on the 01 dimensional time histories. 

5.2. Isothermal Supply Choked Flow 

When P2/#~ <~ K, the approximate expressions [48]-[51], truncated above the quadratic terms, 
may be used to integrate [53]-[57], provided 0t (0)~< 0.6. This becomes particularly easy in the 
isothermal limit Vj--+ 1 since then K0 = e -~/2, A~ ~ -0.2131 = - ~  a n d / i  2 ~ -0.1760 = -b' .  At least 
one of the conditions 7G~I,  ~bl--+l or q~6~ >> I must be true so that 7 ~ 1 .  The resulting supply 
volume fraction is then given implicitly as a function of time by 

=(kl --~j7° "~½(I\ +_ 172"~ in [(.i I ~  J[ +~O-~-oiJ\ I+?01  '~(I - aTO,(O)'~l___~O~ J_] 
-)rlnV( 01 L L\O- -05: 1 - a o ,  - J I J '  [891 

where ? = 0.3264, a7 = 0.5394, ~ = 1.7015 and ) r=  0.8244 specify the other constants. The point in 
time where [89] ceases to be valid (i.e. P:/Pl = K) is determined from 

K ~ e-½(! - ~i0~ - b-0~). [90] 
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Figure 7 is a plot of if1 vs ~(1 - ~,)~"212,_/[~2(1 + I7"2) ] with 0,(0) as a parameter. It shows that when 
0j(0) is not negligible, significant effects occur in this physically realistic limit. Obviously, these 
results are valid for all times in the limit of a sonic discharge to vacuum, 172 >> 1 and /32(0 ) < 1, 
when 7~ ~ I. It does not appear that explicit analytical results are easily obtained in this limit in 
a form comparable to [89] when the flow is unchoked. 

5.3. Numerical Results 

The detailed transient solutions valid for 0,(0) < 1, 02(0) ,~ 1, ~2(0) = 1 and 17" 2 ~ 1 or 17" 2 >> 1 are 
very useful, but they leave a number of  questions unanswered. In particular, what are the effects 
of non-negligible reservoir volume fractions, unequal reservoir mass fractions and reservoir volume 
ratios of the order of  unity, both individually and in combination? These questions are examined 
in this section using exactly the same conditions previously used in the end-state calculations given 
in Chenoweth & Paolucci (1990a). That  is, ?~ = 5/3 and 7~ = 7/5. The same three cases, ~2(0) = 1, 
~2(0) '¢ 1 and 02(0)= 1/2, are compared for various I7" 2 and P2(0) values for both 01(0),~ 1 and 
0j (0 )=  1/2 with T2(0)= 1. The results are then presented in the same form used for the special 
charging and discharging exact solutions already discussed. These are valid for any ~b~ and 6~ giving 
?L = 7/5 when 7G = 5/3, similar to the end-state results. 

First, the times of adiabatic pressure equilibrium are given in figures 8(a-f). Figure 8(a) is for 
q~2(0) = l and 0~ (0) ,~ 1 so that ~ =/3 and the upper and lower curves are in fact the exact solutions; 
thus the only new information on this plot is the I7"2 = 1 and 3 curves. Notice that the 122 = 1 curve 
is much closer to the charging limit than it is to the discharging curve. In figure 8(b) we see that 
for the case where there is negligible particles ~2(0) ,~ 1 in the receiver initially, it appears that there 
is little difference from figure 8(a). In fact, even when 02(0) = 1/2, from figure 8(c) we see that the 
upper curve for discharging appears to be the same; here the other curves are lowered as might 
be expected, since the gas volume ratio V' has been decreased. When P2(0)< K, there are two 
contributions to Zeq: the time to unchoked flow T, and the time spent with subsonic flow. The sonic 
solution to [58] depends on "/~, 0j (0) and (z/re)/22/(1 + I~2) so that it is independent of  the receiver 
conditions which are being altered here. Obviously, any time the sonic portion dominates the 
subsonic portion, little effect of  the receiver parameters will be observed. Also, since the subsonic 
portion of  the solution approaches the end-state results at t--* teq, those end-state results give a good 
indication of the parameter dependence for the final part of the time histories. In the discharging 
limit, the end-state results for fft(t~q) show a dependence only on 7~, 0~(0) and/~2(0). Thus, one 
would expect to observe only the dependence on 0~ (0) for Z~q/Zc in the 1~2 ~> 1 limit and independent 
of q~2(0) and if2(0). Indeed, this is seen in figures 8(d-f)  which are for 01(0) = 1/2, where again the 

IIO 

6" 

¢5- 

c~ 

0.0 2.0 4.0 6.0 8.0 

\ 7 0  } 

10.0 

Figure 7. Supply volume fraction for sonic isothermal discharge vs normalized time with G(0) as 
parameter when &~ ~> I: , G(0)'~ I; ..... , G(0)=0.15; . . . .  , G(0)=0.3; . . . . .  , 0~(0)=0.45; 

, 0 t ( 0 )  = 0 . 6 .  
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Figure 8. Time of adiabatic pressure equilibrium vs initial pressure ratio for Yo = 5/3, h = 7/5 and 
7~2(0) = 1 with 172 as the parameter. 0t(0),~ 1: (a) ~b2(0)= 1; (b) ~b2(0),~ 1; (c) 02(0)= 1/2. 01(0 _) = 1/2: 
(d)~2(0)=l;(e)$2(0),~l;(f)02(0)=l/2. , 17~.~1; ..... , 172=1; - . - ,  //2=3; . . . .  , //"2>>I. 

dashed curves appear to be the same but substantially different from the 0 1  ( 0 )  '~ 1 cases. In these 
figures all of the 0~ (0)= 1/2 curves are substantially below the 0t (0),~ 1 results. Thus, it appears 
that increasing the volume fractions decrease transfer times, while increasing mass fractions 
increase the transfer times via ~c. 

Time histories for gl and if2 - if2(0) are given in figures 9(a--c) -12(a-c) for the cases correspon- 
ding to those in figures 8(a-f), but for just two specific values of P2 (0); these values are P2 (0) = 1/2 
and 0.01, representing mostly subsonic flow, and flow which remains sonic for significant periods 
prior to the unchoking, respectively. The behavior just discussed for the discharging limit I72 >> 1 
is readily observable here; similarly, the sonic solution portions for/~2 < K display the behavior 
already discussed. This explains why there appears to be much less effect of q~:(0) and 02(0) when 
/52(0 ) = 0.01 than for P2(0)= 1/2. Also, for P2(0)= 0.01 it appears that the histories in terms of 
r/Zeq are nearly independent of 0~(0); thus the effects of 0t(0) are primarily contained in the 
normalization of 0j, 05, and r/Zcq. This is not the case for P:(0) = 1/2, where the entire flow is 
predominantly subsonic. 

6. CONCLUSIONS 

The equilibrium flow of homogeneous two-phase mixtures between two vessels with no phase 
change and an ideal carrier gas has been investigated. It is found that the mixture behaves similar 
to a polytropic Abel-Noble gas. The mixture thermodynamic properties, the end-state in each 
vessel at pressure equilibrium, the critical parameters and time-dependent results are given 
for adiabatic and isothermal limiting cases. The mass transferred at adiabatic pressure 
equilibrium can be substantially less than that when thermal equilibrium is also reached (see the 
appendix). It is also found that the adiabatic pressure equilibrium level may not be the same as 
that reached at thermal equilibrium. Furthermore, it is shown that the transfer times can be very 
slow compared to those of a pure gas, due to the large reduction possible in the mixture sound 
speed. 

The results given here form the base solutions which can be used for comparisons as the more 
restrictive assumptions are removed. The limits of validity of these base solutions must be 

IJMF 16/6~H 
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determined more rigorously than it was possible in this investigation. The end-state results do show 
the condit ions  under which finite reservoir heat transfer rates are necessary to determine mass 
transfer and pressure levels. The effects o f  a non-ideal  carrier gas, non-zero mixture transport 
properties, phase change,  thermal slip and relative velocity are beyond the scope of  this study and 
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must be examined in future investigations. In any event, the parameter dependence of  the time to 
adiabatic pressure equilibrium should prove to be useful for scaling estimates even when many o f  
the assumptions are not strictly valid. In the pure gas limit, such a result has been shown to be 
true in many cases. 
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A P P E N D I X  

A Number of Limiting Solutions to [37]for the Adiabatic End-state 

7j~ 1 (isothermal limit) 

There are three independent ways to cause 7~--* 1: 7~--* 1, ~ b ~ l  and q~16~ ~> 1. When ~ 1  (supply 
vessel isothermal), [37] becomes quadratic in/~ (tCq). The case ~c ~  1 results in the trivial no flow 
limit ff~ (tCq)~ 1. The no flow limit also occurs whenever/~2(0)--* 1, I72--.0 or 02 (0)--* 1. For ~b~ ~ 1 
or ~b~ 6~ >> 1, the non-trivial solution 0"t ( t ,q)= ff~ ( ~ )  results, where ffl ( ~ )  is given by [27]. In this 
case 

1 + p 'V '~  p,(to.)=\ j, [A.I] 

which is the same as that given by [24] only when T ( ~ ) =  1. 

V' < I (charging limit) 

When the initial receiver gas volume is much smaller than the initial supply gas volume, the 
supply conditions will remain essentially unchanged during the charging of  the receiver to the 
supply pressure level, so that Pt ~ 1 and ffl ~ 1. 

The conditions in the receiver do change and can be investigated via [28]-[35] if the limiting 
results are carefully derived. The procedures and results are similar to those of a pure gas [see 
Chenoweth (1974, sections C and D)]. When q~z = 4~ and using P2(tCq)= 1, 

[A.21 

and 

When the receiving vessel is initially evacuated 7"2(tCq)~[? ~ - 0~ (0)]/[! - 0~ (0)]. This limit gives the 
maximum effect of compressive heating during the charging process, which for a pure gas reduces 
to the well-known result ofTc.  Clearly, temperatures exceeding the pure gas limit are possible when 
0j (0) # 0. Also notice from [A.2] that when an evacuated vessel, initially containing no particles, 
is used to rapidly draw a sample from its surroundings, the sample volume fraction may be less 
than that of  its surroundings by a factor as large as 7 (~. 
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V'>> 1 (discharging limit) 

In this limit the receiver conditions remain essentially unchanged, so that the supply discharges 
to the receiver pressure level. Therefore from [28] or [37] we obtain the supply volume fraction at 
the adiabatic pressure equilibrium JSl(teq ) =/52(0): 

if, (t,q) = {01 (0) + [1 - 0, (0)]/~2 (0) - ~/"} -i. [A.4] 

For a pure gas this limit is given by Chenoweth (1974, sections E and H). 

= fl (single fluid or negligible particle heat capacity limit) 

Another solution of [37] occurs when ct = fl, giving 

ffl (teq) = { 01 (0) -k- [1 -- 0~ (0)]P~ (teq) - I /h  } - i, 

where 

[A.5] 

which is bounded by 

A 0 
A 0 ~ A ~ A I =/~1 (tcq) I/'/1" [A. 103 

The subscript on A refers to the values of 0, (0). That is, for all 0 ~< 01 (0) ~< 1, A is always greater 
than that of  pure gas (01(0)= 0) for any given P,(t,q). For 0~(0)~< 1/2, a lower upper bound can 
be obtained: 

A ~< AI/2 ~< 1 - 1/71. [A.11] 

The value l - 1 / 7 1  is approached for all 01(0), when P~(t,q) (given by [A.6]) approaches unity; 
clearly this is possible only when 1/',~ 1 or P2(0)~l .  When 7t~TG and V'-~ I72, the results agree 
with those for a pure gas given by Chenoweth (1974, section A; 1983, section H). For 
1/2 ~< 01 (0) < l, a maximum value occurs when dA/dPt (t~) = 0 in the interval 0 < #, (t~) ~ l with 
the value 1 - l/)q ~< Amax < A~ ~< l, where unity is approached by A, a s /5  (t~q)~0. Expressions [A.9] 

p,(toq)= Ix + I + V '  J '  [A.6] 

then #l(teq)= P(oo) only if T(oo)=  T2(0)= I. This special solution can occur in three ways: 

(a) receiver initially evacuated with no particles, /~:(0)= 0, 02(0)= t~2(0)= 0; 
(b) mass fraction of  particles the same in each vessel (single fluid) ~bl = ~b:(0); or 
(c) particle heat capacity negligible versus that of  the gas, 61 '~ 1, 71--*~G. 

Obviously cases (a) and (b) both result in single fluid transfer problems. For case (a) ct = fl = 0, 
while for cases (b) and (c) we have 

~=fl=p'[~-02(0)l~(-~j .  [A.7] 

In the limiting solutions given above, O~ (teq)# 0~ (oo) except for very special cases. In order to 
examine the magnitude of  the difference, a defect parameter is defined analogous to that defined 
by Chenoweth (1974, section A; 1983, section H): 

A -/~'  if'q) -- t~, (oo) [A.8] 
1 --  #, (oo)  

Since O~ = ~ ,  this parameter represents the maximum fraction of the mass transferred at thermal 
equilibrium, which may be retained in the supply when pressure equilibrium is first reached. This 
mass defect is due to departures from thermal equilibrium and can be bounded in some cases. For 
example, using [27] and [A.5] in [A.8] when ~r2(0 ) = 1 so that P l ( t ,q)= P(oo)/~(ov) when ~ =/3, 
we get 

A = P' (teq)'/~'' - p '  (teq) [A.9] 
[1 - / ~ ,  (teq)]{l - 0, (0)[1 - / ~ ,  (teq)'/;"]} ' 
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and [A.I1] are valid whenever V'~ 1, yt--*l or 0t = f l  with T: (0)=  1, as separate cases or in 
combination, and then/~(oo) =/~l(t~q) if ~r(oo)= 1. 

It is of interest to examine the mass defect (as defined by [A.8]), and the pressure ratio 

~51 (t~) [A. 12] 
Pr - p(~) 

using the numerical solution of [37] when • ~ fl, ~:~ # I and V' is finite, to determine if significant 
departures from the special cases can exist. For such general cases, if ~(~) is included, nine 
independent parameters affect the results for ,4 and Pr. The detailed comparisons of that study are 
included in Chenoweth & Paolucci (1990a). The behavior resulting in Pr # I is analogous in some 
respects to that found for ideal gas mixing involving different temperatures and different internal 
molecular structure (see Chenoweth & Paolucci 1989). 


